1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
// Copyright 2018 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. //! Utilities for safe zero-copy parsing and serialization. //! //! This crate provides utilities which make it easy to perform zero-copy //! parsing and serialization by allowing zero-copy conversion to/from byte //! slices. //! //! This is enabled by three core marker traits: //! - [`FromBytes`] indicates that a type may safely be converted from an //! arbitrary byte sequence //! - [`AsBytes`] indicates that a type may safely be converted *to* a byte //! sequence //! - [`Unaligned`] indicates that a type's alignment requirement is 1 //! //! Types which implement a subset of these traits can then be converted to/from //! byte sequences with little to no runtime overhead. #![cfg_attr(not(test), no_std)] #![recursion_limit = "2048"] pub mod byteorder; pub use crate::byteorder::*; pub use zerocopy_derive::*; use core::cell::{Ref, RefMut}; use core::fmt::{self, Debug, Display, Formatter}; use core::marker::PhantomData; use core::mem; use core::ops::{Deref, DerefMut}; use core::slice; // This is a hack to allow derives of FromBytes, AsBytes, and Unaligned to work // in this crate. They assume that zerocopy is linked as an extern crate, so // they access items from it as `zerocopy::Xxx`. This makes that still work. mod zerocopy { pub use crate::*; } // implement an unsafe trait for a range of container types macro_rules! impl_for_composite_types { ($trait:ident) => { unsafe impl<T> $trait for PhantomData<T> { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized, { } } unsafe impl<T: $trait> $trait for [T] { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized, { } } unsafe impl $trait for () { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized, { } } impl_for_array_sizes!($trait); }; } // implement an unsafe trait for all signed and unsigned primitive types macro_rules! impl_for_primitives { ($trait:ident) => ( impl_for_primitives!(@inner $trait, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize); ); (@inner $trait:ident, $type:ty) => ( unsafe impl $trait for $type { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {} } ); (@inner $trait:ident, $type:ty, $($types:ty),*) => ( unsafe impl $trait for $type { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {} } impl_for_primitives!(@inner $trait, $($types),*); ); } // implement an unsafe trait for all array lengths up to 1024, plus several // useful powers-of-two beyond that, with an element type that implements // the trait macro_rules! impl_for_array_sizes { ($trait:ident) => ( impl_for_array_sizes!(@inner $trait, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 2048, 4096, 8192, 16384, 32768, 65536); ); (@inner $trait:ident, $n:expr) => ( unsafe impl<T: $trait> $trait for [T; $n] { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {} } ); (@inner $trait:ident, $n:expr, $($ns:expr),*) => ( unsafe impl<T: $trait> $trait for [T; $n] { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {} } impl_for_array_sizes!(@inner $trait, $($ns),*); ); } /// Types for which any byte pattern is valid. /// /// WARNING: Do not implement this trait yourself! Instead, use /// `#[derive(FromBytes)]`. /// /// `FromBytes` types can safely be deserialized from an untrusted sequence of /// bytes because any byte sequence corresponds to a valid instance of the type. /// /// # Safety /// /// If `T: FromBytes`, then unsafe code may assume that it is sound to treat any /// initialized sequence of bytes of length `size_of::<T>()` as a `T`. If a type /// is marked as `FromBytes` which violates this contract, it may cause /// undefined behavior. /// /// If a type has the following properties, then it is safe to implement /// `FromBytes` for that type: /// - If the type is a struct: /// - It must have a defined representation (`repr(C)`, `repr(transparent)`, /// or `repr(packed)`) /// - All of its fields must implement `FromBytes` /// - If the type is an enum: /// - It must be a C-like enum (meaning that all variants have no fields) /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). /// - The maximum number of discriminants must be used (so that every possible /// bit pattern is a valid one). Be very careful when using the `C`, /// `usize`, or `isize` representations, as their size is /// platform-dependent. pub unsafe trait FromBytes { // NOTE: The Self: Sized bound makes it so that FromBytes is still object // safe. #[doc(hidden)] fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized; } /// Types which are safe to treat as an immutable byte slice. /// /// WARNING: Do not implement this trait yourself! Instead, use /// `#[derive(AsBytes)]`. /// /// `AsBytes` types can be safely viewed as a slice of bytes. In particular, /// this means that, in any valid instance of the type, none of the bytes of the /// instance are uninitialized. This precludes the following types: /// - Structs with internal padding /// - Unions in which not all variants have the same length /// /// # Safety /// /// If `T: AsBytes`, then unsafe code may assume that it is sound to treat any /// instance of the type as an immutable `[u8]` of length `size_of::<T>()`. If a /// type is marked as `AsBytes` which violates this contract, it may cause /// undefined behavior. /// /// If a type has the following properties, then it is safe to implement /// `AsBytes` for that type /// - If the type is a struct: /// - It must have a defined representation (`repr(C)`, `repr(transparent)`, /// or `repr(packed)`). /// - All of its fields must be `AsBytes` /// - Its layout must have no inter-field padding. This is always true for /// `repr(transparent)` and `repr(packed)`. For `repr(C)`, see the layout /// algorithm described in the [Rust Reference]. /// - If the type is an enum: /// - It must be a C-like enum (meaning that all variants have no fields) /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). /// /// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html pub unsafe trait AsBytes { #[doc(hidden)] fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized; /// Get the bytes of this value. /// /// `as_bytes` provides access to the bytes of this value as an immutable /// byte slice. fn as_bytes(&self) -> &[u8] { unsafe { // NOTE: This function does not have a Self: Sized bound. // size_of_val works for unsized values too. let len = mem::size_of_val(self); slice::from_raw_parts(self as *const Self as *const u8, len) } } /// Get the bytes of this value mutably. /// /// `as_bytes_mut` provides access to the bytes of this value as a mutable /// byte slice. fn as_bytes_mut(&mut self) -> &mut [u8] where Self: FromBytes, { unsafe { // NOTE: This function does not have a Self: Sized bound. // size_of_val works for unsized values too. let len = mem::size_of_val(self); slice::from_raw_parts_mut(self as *mut Self as *mut u8, len) } } } impl_for_primitives!(FromBytes); impl_for_primitives!(AsBytes); impl_for_composite_types!(FromBytes); impl_for_composite_types!(AsBytes); /// Types with no alignment requirement. /// /// WARNING: Do not implement this trait yourself! Instead, use /// `#[derive(Unaligned)]`. /// /// If `T: Unaligned`, then `align_of::<T>() == 1`. /// /// # Safety /// /// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a /// reference to `T` at any memory location regardless of alignment. If a type /// is marked as `Unaligned` which violates this contract, it may cause /// undefined behavior. pub unsafe trait Unaligned { // NOTE: The Self: Sized bound makes it so that Unaligned is still object // safe. #[doc(hidden)] fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized; } unsafe impl Unaligned for u8 { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized, { } } unsafe impl Unaligned for i8 { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized, { } } impl_for_composite_types!(Unaligned); /// A length- and alignment-checked reference to a byte slice which can safely /// be reinterpreted as another type. /// /// `LayoutVerified` is a byte slice reference (`&[u8]`, `&mut [u8]`, /// `Ref<[u8]>`, `RefMut<[u8]>`, etc) with the invaraint that the slice's length /// and alignment are each greater than or equal to the length and alignment of /// `T`. Using this invariant, it implements `Deref` for `T` so long as `T: /// FromBytes` and `DerefMut` so long as `T: FromBytes + AsBytes`. /// /// # Examples /// /// `LayoutVerified` can be used to treat a sequence of bytes as a structured /// type, and to read and write the fields of that type as if the byte slice /// reference were simply a reference to that type. /// /// ```rust /// use zerocopy::{AsBytes, ByteSlice, ByteSliceMut, FromBytes, LayoutVerified, Unaligned}; /// /// #[derive(FromBytes, AsBytes, Unaligned)] /// #[repr(C)] /// struct UdpHeader { /// src_port: [u8; 2], /// dst_port: [u8; 2], /// length: [u8; 2], /// checksum: [u8; 2], /// } /// /// struct UdpPacket<B> { /// header: LayoutVerified<B, UdpHeader>, /// body: B, /// } /// /// impl<B: ByteSlice> UdpPacket<B> { /// pub fn parse(bytes: B) -> Option<UdpPacket<B>> { /// let (header, body) = LayoutVerified::new_unaligned_from_prefix(bytes)?; /// Some(UdpPacket { header, body }) /// } /// /// pub fn get_src_port(&self) -> [u8; 2] { /// self.header.src_port /// } /// } /// /// impl<B: ByteSliceMut> UdpPacket<B> { /// pub fn set_src_port(&mut self, src_port: [u8; 2]) { /// self.header.src_port = src_port; /// } /// } /// ``` pub struct LayoutVerified<B, T: ?Sized>(B, PhantomData<T>); impl<B, T> LayoutVerified<B, T> where B: ByteSlice, { /// Construct a new `LayoutVerified`. /// /// `new` verifies that `bytes.len() == size_of::<T>()` and that `bytes` is /// aligned to `align_of::<T>()`, and constructs a new `LayoutVerified`. If /// either of these checks fail, it returns `None`. #[inline] pub fn new(bytes: B) -> Option<LayoutVerified<B, T>> { if bytes.len() != mem::size_of::<T>() || !aligned_to(bytes.deref(), mem::align_of::<T>()) { return None; } Some(LayoutVerified(bytes, PhantomData)) } /// Construct a new `LayoutVerified` from the prefix of a byte slice. /// /// `new_from_prefix` verifies that `bytes.len() >= size_of::<T>()` and that /// `bytes` is aligned to `align_of::<T>()`. It consumes the first /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and /// returns the remaining bytes to the caller. If either the length or /// alignment checks fail, it returns `None`. #[inline] pub fn new_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> { if bytes.len() < mem::size_of::<T>() || !aligned_to(bytes.deref(), mem::align_of::<T>()) { return None; } let (bytes, suffix) = bytes.split_at(mem::size_of::<T>()); Some((LayoutVerified(bytes, PhantomData), suffix)) } /// Construct a new `LayoutVerified` from the suffix of a byte slice. /// /// `new_from_suffix` verifies that `bytes.len() >= size_of::<T>()` and that /// the last `size_of::<T>()` bytes of `bytes` are aligned to /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes /// to the caller. If either the length or alignment checks fail, it returns /// `None`. #[inline] pub fn new_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> { let bytes_len = bytes.len(); if bytes_len < mem::size_of::<T>() { return None; } let (prefix, bytes) = bytes.split_at(bytes_len - mem::size_of::<T>()); if !aligned_to(bytes.deref(), mem::align_of::<T>()) { return None; } Some((prefix, LayoutVerified(bytes, PhantomData))) } } impl<B, T> LayoutVerified<B, T> where B: ByteSlice, T: ?Sized, { // Get the underlying bytes. #[inline] pub fn bytes(&self) -> &[u8] { &self.0 } } impl<B, T> LayoutVerified<B, [T]> where B: ByteSlice, { /// Construct a new `LayoutVerified` of a slice type. /// /// `new_slice` verifies that `bytes.len()` is a multiple of /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and /// constructs a new `LayoutVerified`. If either of these checks fail, it /// returns `None`. /// /// # Panics /// /// `new_slice` panics if `T` is a zero-sized type. #[inline] pub fn new_slice(bytes: B) -> Option<LayoutVerified<B, [T]>> { assert_ne!(mem::size_of::<T>(), 0); if bytes.len() % mem::size_of::<T>() != 0 || !aligned_to(bytes.deref(), mem::align_of::<T>()) { return None; } Some(LayoutVerified(bytes, PhantomData)) } } fn map_zeroed<B: ByteSliceMut, T: ?Sized>( opt: Option<LayoutVerified<B, T>>, ) -> Option<LayoutVerified<B, T>> { match opt { Some(mut lv) => { for b in lv.0.iter_mut() { *b = 0; } Some(lv) } None => None, } } fn map_prefix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>( opt: Option<(LayoutVerified<B, T>, B)>, ) -> Option<(LayoutVerified<B, T>, B)> { match opt { Some((mut lv, rest)) => { for b in lv.0.iter_mut() { *b = 0; } Some((lv, rest)) } None => None, } } fn map_suffix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>( opt: Option<(B, LayoutVerified<B, T>)>, ) -> Option<(B, LayoutVerified<B, T>)> { map_prefix_tuple_zeroed(opt.map(|(a, b)| (b, a))).map(|(a, b)| (b, a)) } impl<B, T> LayoutVerified<B, T> where B: ByteSliceMut, { /// Construct a new `LayoutVerified` after zeroing the bytes. /// /// `new_zeroed` verifies that `bytes.len() == size_of::<T>()` and that /// `bytes` is aligned to `align_of::<T>()`, and constructs a new /// `LayoutVerified`. If either of these checks fail, it returns `None`. /// /// If the checks succeed, then `bytes` will be initialized to zero. This /// can be useful when re-using buffers to ensure that sensitive data /// previously stored in the buffer is not leaked. #[inline] pub fn new_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> { map_zeroed(Self::new(bytes)) } /// Construct a new `LayoutVerified` from the prefix of a byte slice, /// zeroing the prefix. /// /// `new_from_prefix_zeroed` verifies that `bytes.len() >= size_of::<T>()` /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the first /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and /// returns the remaining bytes to the caller. If either the length or /// alignment checks fail, it returns `None`. /// /// If the checks succeed, then the prefix which is consumed will be /// initialized to zero. This can be useful when re-using buffers to ensure /// that sensitive data previously stored in the buffer is not leaked. #[inline] pub fn new_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> { map_prefix_tuple_zeroed(Self::new_from_prefix(bytes)) } /// Construct a new `LayoutVerified` from the suffix of a byte slice, /// zeroing the suffix. /// /// `new_from_suffix_zeroed` verifies that `bytes.len() >= size_of::<T>()` and that /// the last `size_of::<T>()` bytes of `bytes` are aligned to /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes /// to the caller. If either the length or alignment checks fail, it returns /// `None`. /// /// If the checks succeed, then the suffix which is consumed will be /// initialized to zero. This can be useful when re-using buffers to ensure /// that sensitive data previously stored in the buffer is not leaked. #[inline] pub fn new_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> { map_suffix_tuple_zeroed(Self::new_from_suffix(bytes)) } } impl<B, T> LayoutVerified<B, [T]> where B: ByteSliceMut, { /// Construct a new `LayoutVerified` of a slice type after zeroing the /// bytes. /// /// `new_slice_zeroed` verifies that `bytes.len()` is a multiple of /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and /// constructs a new `LayoutVerified`. If either of these checks fail, it /// returns `None`. /// /// If the checks succeed, then `bytes` will be initialized to zero. This /// can be useful when re-using buffers to ensure that sensitive data /// previously stored in the buffer is not leaked. /// /// # Panics /// /// `new_slice` panics if `T` is a zero-sized type. #[inline] pub fn new_slice_zeroed(bytes: B) -> Option<LayoutVerified<B, [T]>> { map_zeroed(Self::new_slice(bytes)) } } impl<B, T> LayoutVerified<B, T> where B: ByteSlice, T: Unaligned, { /// Construct a new `LayoutVerified` for a type with no alignment /// requirement. /// /// `new_unaligned` verifies that `bytes.len() == size_of::<T>()` and /// constructs a new `LayoutVerified`. If the check fails, it returns /// `None`. #[inline] pub fn new_unaligned(bytes: B) -> Option<LayoutVerified<B, T>> { if bytes.len() != mem::size_of::<T>() { return None; } Some(LayoutVerified(bytes, PhantomData)) } /// Construct a new `LayoutVerified` from the prefix of a byte slice for a /// type with no alignment requirement. /// /// `new_unaligned_from_prefix` verifies that `bytes.len() >= /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes /// to the caller. If the length check fails, it returns `None`. #[inline] pub fn new_unaligned_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> { if bytes.len() < mem::size_of::<T>() { return None; } let (bytes, suffix) = bytes.split_at(mem::size_of::<T>()); Some((LayoutVerified(bytes, PhantomData), suffix)) } /// Construct a new `LayoutVerified` from the suffix of a byte slice for a /// type with no alignment requirement. /// /// `new_unaligned_from_suffix` verifies that `bytes.len() >= /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes /// to the caller. If the length check fails, it returns `None`. #[inline] pub fn new_unaligned_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> { let bytes_len = bytes.len(); if bytes_len < mem::size_of::<T>() { return None; } let (prefix, bytes) = bytes.split_at(bytes_len - mem::size_of::<T>()); Some((prefix, LayoutVerified(bytes, PhantomData))) } } impl<B, T> LayoutVerified<B, [T]> where B: ByteSlice, T: Unaligned, { /// Construct a new `LayoutVerified` of a slice type with no alignment /// requirement. /// /// `new_slice_unaligned` verifies that `bytes.len()` is a multiple of /// `size_of::<T>()` and constructs a new `LayoutVerified`. If the check /// fails, it returns `None`. /// /// # Panics /// /// `new_slice` panics if `T` is a zero-sized type. #[inline] pub fn new_slice_unaligned(bytes: B) -> Option<LayoutVerified<B, [T]>> { assert_ne!(mem::size_of::<T>(), 0); if bytes.len() % mem::size_of::<T>() != 0 { return None; } Some(LayoutVerified(bytes, PhantomData)) } } impl<B, T> LayoutVerified<B, T> where B: ByteSliceMut, T: Unaligned, { /// Construct a new `LayoutVerified` for a type with no alignment /// requirement, zeroing the bytes. /// /// `new_unaligned_zeroed` verifies that `bytes.len() == size_of::<T>()` and /// constructs a new `LayoutVerified`. If the check fails, it returns /// `None`. /// /// If the check succeeds, then `bytes` will be initialized to zero. This /// can be useful when re-using buffers to ensure that sensitive data /// previously stored in the buffer is not leaked. #[inline] pub fn new_unaligned_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> { map_zeroed(Self::new_unaligned(bytes)) } /// Construct a new `LayoutVerified` from the prefix of a byte slice for a /// type with no alignment requirement, zeroing the prefix. /// /// `new_unaligned_from_prefix_zeroed` verifies that `bytes.len() >= /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes /// to the caller. If the length check fails, it returns `None`. /// /// If the check succeeds, then the prefix which is consumed will be /// initialized to zero. This can be useful when re-using buffers to ensure /// that sensitive data previously stored in the buffer is not leaked. #[inline] pub fn new_unaligned_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> { map_prefix_tuple_zeroed(Self::new_unaligned_from_prefix(bytes)) } /// Construct a new `LayoutVerified` from the suffix of a byte slice for a /// type with no alignment requirement, zeroing the suffix. /// /// `new_unaligned_from_suffix_zeroed` verifies that `bytes.len() >= /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes /// to the caller. If the length check fails, it returns `None`. /// /// If the check succeeds, then the suffix which is consumed will be /// initialized to zero. This can be useful when re-using buffers to ensure /// that sensitive data previously stored in the buffer is not leaked. #[inline] pub fn new_unaligned_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> { map_suffix_tuple_zeroed(Self::new_unaligned_from_suffix(bytes)) } } impl<B, T> LayoutVerified<B, [T]> where B: ByteSliceMut, T: Unaligned, { /// Construct a new `LayoutVerified` for a slice type with no alignment /// requirement, zeroing the bytes. /// /// `new_slice_unaligned_zeroed` verifies that `bytes.len()` is a multiple /// of `size_of::<T>()` and constructs a new `LayoutVerified`. If the check /// fails, it returns `None`. /// /// If the check succeeds, then `bytes` will be initialized to zero. This /// can be useful when re-using buffers to ensure that sensitive data /// previously stored in the buffer is not leaked. /// /// # Panics /// /// `new_slice` panics if `T` is a zero-sized type. #[inline] pub fn new_slice_unaligned_zeroed(bytes: B) -> Option<LayoutVerified<B, [T]>> { map_zeroed(Self::new_slice_unaligned(bytes)) } } impl<'a, B, T> LayoutVerified<B, T> where B: 'a + ByteSlice, T: FromBytes, { /// Convert this `LayoutVerified` into a reference. /// /// `into_ref` consumes the `LayoutVerified`, and returns a reference to /// `T`. pub fn into_ref(self) -> &'a T { // NOTE: This is safe because `B` is guaranteed to live for the lifetime // `'a`, meaning that a) the returned reference cannot outlive the `B` // from which `self` was constructed and, b) no mutable methods on that // `B` can be called during the lifetime of the returned reference. See // the documentation on `deref_helper` for what invariants we are // required to uphold. unsafe { self.deref_helper() } } } impl<'a, B, T> LayoutVerified<B, T> where B: 'a + ByteSliceMut, T: FromBytes + AsBytes, { /// Convert this `LayoutVerified` into a mutable reference. /// /// `into_mut` consumes the `LayoutVerified`, and returns a mutable /// reference to `T`. pub fn into_mut(mut self) -> &'a mut T { // NOTE: This is safe because `B` is guaranteed to live for the lifetime // `'a`, meaning that a) the returned reference cannot outlive the `B` // from which `self` was constructed and, b) no other methods - mutable // or immutable - on that `B` can be called during the lifetime of the // returned reference. See the documentation on `deref_mut_helper` for // what invariants we are required to uphold. unsafe { self.deref_mut_helper() } } } impl<'a, B, T> LayoutVerified<B, [T]> where B: 'a + ByteSlice, T: FromBytes, { /// Convert this `LayoutVerified` into a slice reference. /// /// `into_slice` consumes the `LayoutVerified`, and returns a reference to /// `[T]`. pub fn into_slice(self) -> &'a [T] { // NOTE: This is safe because `B` is guaranteed to live for the lifetime // `'a`, meaning that a) the returned reference cannot outlive the `B` // from which `self` was constructed and, b) no mutable methods on that // `B` can be called during the lifetime of the returned reference. See // the documentation on `deref_slice_helper` for what invariants we are // required to uphold. unsafe { self.deref_slice_helper() } } } impl<'a, B, T> LayoutVerified<B, [T]> where B: 'a + ByteSliceMut, T: FromBytes + AsBytes, { /// Convert this `LayoutVerified` into a mutable slice reference. /// /// `into_mut_slice` consumes the `LayoutVerified`, and returns a mutable reference to /// `[T]`. pub fn into_mut_slice(mut self) -> &'a mut [T] { // NOTE: This is safe because `B` is guaranteed to live for the lifetime // `'a`, meaning that a) the returned reference cannot outlive the `B` // from which `self` was constructed and, b) no other methods - mutable // or immutable - on that `B` can be called during the lifetime of the // returned reference. See the documentation on `deref_mut_slice_helper` // for what invariants we are required to uphold. unsafe { self.deref_mut_slice_helper() } } } impl<B, T> LayoutVerified<B, T> where B: ByteSlice, T: FromBytes, { /// Create an immutable reference to `T` with a specific lifetime. /// /// # Safety /// /// The type bounds on this method guarantee that it is safe to create an /// immutable reference to `T` from `self`. However, since the lifetime `'a` /// is not required to be shorter than the lifetime of the reference to /// `self`, the caller must guarantee that the lifetime `'a` is valid for /// this reference. In particular, the referent must exist for all of `'a`, /// and no mutable references to the same memory may be constructed during /// `'a`. unsafe fn deref_helper<'a>(&self) -> &'a T { &*(self.0.as_ptr() as *const T) } } impl<B, T> LayoutVerified<B, T> where B: ByteSliceMut, T: FromBytes + AsBytes, { /// Create a mutable reference to `T` with a specific lifetime. /// /// # Safety /// /// The type bounds on this method guarantee that it is safe to create a /// mutable reference to `T` from `self`. However, since the lifetime `'a` /// is not required to be shorter than the lifetime of the reference to /// `self`, the caller must guarantee that the lifetime `'a` is valid for /// this reference. In particular, the referent must exist for all of `'a`, /// and no other references - mutable or immutable - to the same memory may /// be constructed during `'a`. unsafe fn deref_mut_helper<'a>(&mut self) -> &'a mut T { &mut *(self.0.as_mut_ptr() as *mut T) } } impl<B, T> LayoutVerified<B, [T]> where B: ByteSlice, T: FromBytes, { /// Create an immutable reference to `[T]` with a specific lifetime. /// /// # Safety /// /// `deref_slice_helper` has the same safety requirements as `deref_helper`. unsafe fn deref_slice_helper<'a>(&self) -> &'a [T] { let len = self.0.len(); let elem_size = mem::size_of::<T>(); debug_assert_ne!(elem_size, 0); debug_assert_eq!(len % elem_size, 0); let elems = len / elem_size; slice::from_raw_parts(self.0.as_ptr() as *const T, elems) } } impl<B, T> LayoutVerified<B, [T]> where B: ByteSliceMut, T: FromBytes + AsBytes, { /// Create a mutable reference to `[T]` with a specific lifetime. /// /// # Safety /// /// `deref_mut_slice_helper` has the same safety requirements as /// `deref_mut_helper`. unsafe fn deref_mut_slice_helper<'a>(&mut self) -> &'a mut [T] { let len = self.0.len(); let elem_size = mem::size_of::<T>(); debug_assert_ne!(elem_size, 0); debug_assert_eq!(len % elem_size, 0); let elems = len / elem_size; slice::from_raw_parts_mut(self.0.as_mut_ptr() as *mut T, elems) } } fn aligned_to(bytes: &[u8], align: usize) -> bool { (bytes as *const _ as *const () as usize) % align == 0 } impl<B, T> LayoutVerified<B, T> where B: ByteSliceMut, T: ?Sized, { // Get the underlying bytes mutably. #[inline] pub fn bytes_mut(&mut self) -> &mut [u8] { &mut self.0 } } impl<B, T> Deref for LayoutVerified<B, T> where B: ByteSlice, T: FromBytes, { type Target = T; #[inline] fn deref(&self) -> &T { // NOTE: This is safe because the lifetime of `self` is the same as the // lifetime of the return value, meaning that a) the returned reference // cannot outlive `self` and, b) no mutable methods on `self` can be // called during the lifetime of the returned reference. See the // documentation on `deref_helper` for what invariants we are required // to uphold. unsafe { self.deref_helper() } } } impl<B, T> DerefMut for LayoutVerified<B, T> where B: ByteSliceMut, T: FromBytes + AsBytes, { #[inline] fn deref_mut(&mut self) -> &mut T { // NOTE: This is safe because the lifetime of `self` is the same as the // lifetime of the return value, meaning that a) the returned reference // cannot outlive `self` and, b) no other methods on `self` can be // called during the lifetime of the returned reference. See the // documentation on `deref_mut_helper` for what invariants we are // required to uphold. unsafe { self.deref_mut_helper() } } } impl<B, T> Deref for LayoutVerified<B, [T]> where B: ByteSlice, T: FromBytes, { type Target = [T]; #[inline] fn deref(&self) -> &[T] { // NOTE: This is safe because the lifetime of `self` is the same as the // lifetime of the return value, meaning that a) the returned reference // cannot outlive `self` and, b) no mutable methods on `self` can be // called during the lifetime of the returned reference. See the // documentation on `deref_slice_helper` for what invariants we are // required to uphold. unsafe { self.deref_slice_helper() } } } impl<B, T> DerefMut for LayoutVerified<B, [T]> where B: ByteSliceMut, T: FromBytes + AsBytes, { #[inline] fn deref_mut(&mut self) -> &mut [T] { // NOTE: This is safe because the lifetime of `self` is the same as the // lifetime of the return value, meaning that a) the returned reference // cannot outlive `self` and, b) no other methods on `self` can be // called during the lifetime of the returned reference. See the // documentation on `deref_mut_slice_helper` for what invariants we are // required to uphold. unsafe { self.deref_mut_slice_helper() } } } impl<T, B> Display for LayoutVerified<B, T> where B: ByteSlice, T: FromBytes + Display, { #[inline] fn fmt(&self, fmt: &mut Formatter) -> fmt::Result { let inner: &T = self; inner.fmt(fmt) } } impl<T, B> Debug for LayoutVerified<B, T> where B: ByteSlice, T: FromBytes + Debug, { #[inline] fn fmt(&self, fmt: &mut Formatter) -> fmt::Result { let inner: &T = self; fmt.debug_tuple("LayoutVerified").field(&inner).finish() } } impl<T, B> Display for LayoutVerified<B, [T]> where B: ByteSlice, T: FromBytes, [T]: Display, { #[inline] fn fmt(&self, fmt: &mut Formatter) -> fmt::Result { let inner: &[T] = self; inner.fmt(fmt) } } impl<T, B> Debug for LayoutVerified<B, [T]> where B: ByteSlice, T: FromBytes + Debug, { #[inline] fn fmt(&self, fmt: &mut Formatter) -> fmt::Result { let inner: &[T] = self; fmt.debug_tuple("LayoutVerified").field(&inner).finish() } } mod sealed { use core::cell::{Ref, RefMut}; pub trait Sealed {} impl<'a> Sealed for &'a [u8] {} impl<'a> Sealed for &'a mut [u8] {} impl<'a> Sealed for Ref<'a, [u8]> {} impl<'a> Sealed for RefMut<'a, [u8]> {} } // ByteSlice and ByteSliceMut abstract over [u8] references (&[u8], &mut [u8], // Ref<[u8]>, RefMut<[u8]>, etc). We rely on various behaviors of these // references such as that a given reference will never changes its length // between calls to deref() or deref_mut(), and that split_at() works as // expected. If ByteSlice or ByteSliceMut were not sealed, consumers could // implement them in a way that violated these behaviors, and would break our // unsafe code. Thus, we seal them and implement it only for known-good // reference types. For the same reason, they're unsafe traits. /// A mutable or immutable reference to a byte slice. /// /// `ByteSlice` abstracts over the mutability of a byte slice reference, and is /// implemented for various special reference types such as `Ref<[u8]>` and /// `RefMut<[u8]>`. pub unsafe trait ByteSlice: Deref<Target = [u8]> + Sized + self::sealed::Sealed { fn as_ptr(&self) -> *const u8; fn split_at(self, mid: usize) -> (Self, Self); } /// A mutable reference to a byte slice. /// /// `ByteSliceMut` abstracts over various ways of storing a mutable reference to /// a byte slice, and is implemented for various special reference types such as /// `RefMut<[u8]>`. pub unsafe trait ByteSliceMut: ByteSlice + DerefMut { fn as_mut_ptr(&mut self) -> *mut u8; } unsafe impl<'a> ByteSlice for &'a [u8] { fn as_ptr(&self) -> *const u8 { <[u8]>::as_ptr(self) } fn split_at(self, mid: usize) -> (Self, Self) { <[u8]>::split_at(self, mid) } } unsafe impl<'a> ByteSlice for &'a mut [u8] { fn as_ptr(&self) -> *const u8 { <[u8]>::as_ptr(self) } fn split_at(self, mid: usize) -> (Self, Self) { <[u8]>::split_at_mut(self, mid) } } unsafe impl<'a> ByteSlice for Ref<'a, [u8]> { fn as_ptr(&self) -> *const u8 { <[u8]>::as_ptr(self) } fn split_at(self, mid: usize) -> (Self, Self) { Ref::map_split(self, |slice| <[u8]>::split_at(slice, mid)) } } unsafe impl<'a> ByteSlice for RefMut<'a, [u8]> { fn as_ptr(&self) -> *const u8 { <[u8]>::as_ptr(self) } fn split_at(self, mid: usize) -> (Self, Self) { RefMut::map_split(self, |slice| <[u8]>::split_at_mut(slice, mid)) } } unsafe impl<'a> ByteSliceMut for &'a mut [u8] { fn as_mut_ptr(&mut self) -> *mut u8 { <[u8]>::as_mut_ptr(self) } } unsafe impl<'a> ByteSliceMut for RefMut<'a, [u8]> { fn as_mut_ptr(&mut self) -> *mut u8 { <[u8]>::as_mut_ptr(self) } } #[cfg(test)] mod tests { #![allow(clippy::unreadable_literal)] use core::ops::Deref; use core::ptr; use super::*; // B should be [u8; N]. T will require that the entire structure is aligned // to the alignment of T. #[derive(Default)] struct AlignedBuffer<T, B> { buf: B, _t: T, } impl<T, B: Default> AlignedBuffer<T, B> { fn clear_buf(&mut self) { self.buf = B::default(); } } // convert a u64 to bytes using this platform's endianness fn u64_to_bytes(u: u64) -> [u8; 8] { unsafe { ptr::read(&u as *const u64 as *const [u8; 8]) } } // convert a u128 to bytes using this platform's endianness fn u128_to_bytes(u: u128) -> [u8; 16] { unsafe { ptr::read(&u as *const u128 as *const [u8; 16]) } } #[test] fn test_address() { // test that the Deref and DerefMut implementations return a reference which // points to the right region of memory let buf = [0]; let lv = LayoutVerified::<_, u8>::new(&buf[..]).unwrap(); let buf_ptr = buf.as_ptr(); let deref_ptr = lv.deref() as *const u8; assert_eq!(buf_ptr, deref_ptr); let buf = [0]; let lv = LayoutVerified::<_, [u8]>::new_slice(&buf[..]).unwrap(); let buf_ptr = buf.as_ptr(); let deref_ptr = lv.deref().as_ptr(); assert_eq!(buf_ptr, deref_ptr); } // verify that values written to a LayoutVerified are properly shared // between the typed and untyped representations fn test_new_helper<'a>(mut lv: LayoutVerified<&'a mut [u8], u64>) { // assert that the value starts at 0 assert_eq!(*lv, 0); // assert that values written to the typed value are reflected in the // byte slice const VAL1: u64 = 0xFF00FF00FF00FF00; *lv = VAL1; assert_eq!(lv.bytes(), &u64_to_bytes(VAL1)); // assert that values written to the byte slice are reflected in the // typed value const VAL2: u64 = !VAL1; // different from VAL1 lv.bytes_mut().copy_from_slice(&u64_to_bytes(VAL2)[..]); assert_eq!(*lv, VAL2); } // verify that values written to a LayoutVerified are properly shared // between the typed and untyped representations; pass a value with // byte length 16/typed length 2 fn test_new_helper_slice<'a>(mut lv: LayoutVerified<&'a mut [u8], [u64]>) { // assert that the value starts at [0, 0] assert_eq!(*lv, [0, 0]); // assert that values written to the typed value are reflected in the // byte slice const VAL1: u64 = 0xFF00FF00FF00FF00; const VAL1_DOUBLED: u128 = 0xFF00FF00FF00FF00FF00FF00FF00FF00; lv[0] = VAL1; lv[1] = VAL1; assert_eq!(lv.bytes(), &u128_to_bytes(VAL1_DOUBLED)); // assert that values written to the byte slice are reflected in the // typed value const VAL2: u64 = !VAL1; // different from VAL1 const VAL2_DOUBLED: u128 = !VAL1_DOUBLED; lv.bytes_mut().copy_from_slice(&u128_to_bytes(VAL2_DOUBLED)[..]); assert_eq!(*lv, [VAL2, VAL2]); } // verify that values written to a LayoutVerified are properly shared // between the typed and untyped representations fn test_new_helper_unaligned<'a>(mut lv: LayoutVerified<&'a mut [u8], [u8; 8]>) { // assert that the value starts at 0 assert_eq!(*lv, [0; 8]); // assert that values written to the typed value are reflected in the // byte slice const VAL1: [u8; 8] = [0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00]; *lv = VAL1; assert_eq!(lv.bytes(), &VAL1); // assert that values written to the byte slice are reflected in the // typed value const VAL2: [u8; 8] = [0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF]; // different from VAL1 lv.bytes_mut().copy_from_slice(&VAL2[..]); assert_eq!(*lv, VAL2); } // verify that values written to a LayoutVerified are properly shared // between the typed and untyped representations; pass a value with // length 16 fn test_new_helper_slice_unaligned<'a>(mut lv: LayoutVerified<&'a mut [u8], [u8]>) { // assert that the value starts at [0; 16] assert_eq!(*lv, [0u8; 16][..]); // assert that values written to the typed value are reflected in the // byte slice const VAL1: [u8; 16] = [ 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, ]; lv.copy_from_slice(&VAL1[..]); assert_eq!(lv.bytes(), &VAL1); // assert that values written to the byte slice are reflected in the // typed value const VAL2: [u8; 16] = [ 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, ]; lv.bytes_mut().copy_from_slice(&VAL2[..]); assert_eq!(*lv, VAL2); } #[test] fn test_new_aligned_sized() { // Test that a properly-aligned, properly-sized buffer works for new, // new_from_preifx, and new_from_suffix, and that new_from_prefix and // new_from_suffix return empty slices. Test that a properly-aligned // buffer whose length is a multiple of the element size works for // new_slice. Test that xxx_zeroed behaves the same, and zeroes the // memory. // a buffer with an alignment of 8 let mut buf = AlignedBuffer::<u64, [u8; 8]>::default(); // buf.buf should be aligned to 8, so this should always succeed test_new_helper(LayoutVerified::<_, u64>::new(&mut buf.buf[..]).unwrap()); buf.buf = [0xFFu8; 8]; test_new_helper(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).unwrap()); { // in a block so that lv and suffix don't live too long buf.clear_buf(); let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix(&mut buf.buf[..]).unwrap(); assert!(suffix.is_empty()); test_new_helper(lv); } { buf.buf = [0xFFu8; 8]; let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).unwrap(); assert!(suffix.is_empty()); test_new_helper(lv); } { buf.clear_buf(); let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix(&mut buf.buf[..]).unwrap(); assert!(prefix.is_empty()); test_new_helper(lv); } { buf.buf = [0xFFu8; 8]; let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).unwrap(); assert!(prefix.is_empty()); test_new_helper(lv); } // a buffer with alignment 8 and length 16 let mut buf = AlignedBuffer::<u64, [u8; 16]>::default(); // buf.buf should be aligned to 8 and have a length which is a multiple // of size_of::<u64>(), so this should always succeed test_new_helper_slice(LayoutVerified::<_, [u64]>::new_slice(&mut buf.buf[..]).unwrap()); buf.buf = [0xFFu8; 16]; test_new_helper_slice( LayoutVerified::<_, [u64]>::new_slice_zeroed(&mut buf.buf[..]).unwrap(), ); } #[test] fn test_new_unaligned_sized() { // Test that an unaligned, properly-sized buffer works for // new_unaligned, new_unaligned_from_prefix, and // new_unaligned_from_suffix, and that new_unaligned_from_prefix // new_unaligned_from_suffix return empty slices. Test that an unaligned // buffer whose length is a multiple of the element size works for // new_slice. Test that xxx_zeroed behaves the same, and zeroes the // memory. let mut buf = [0u8; 8]; test_new_helper_unaligned( LayoutVerified::<_, [u8; 8]>::new_unaligned(&mut buf[..]).unwrap(), ); buf = [0xFFu8; 8]; test_new_helper_unaligned( LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf[..]).unwrap(), ); { // in a block so that lv and suffix don't live too long buf = [0u8; 8]; let (lv, suffix) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap(); assert!(suffix.is_empty()); test_new_helper_unaligned(lv); } { buf = [0xFFu8; 8]; let (lv, suffix) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..]) .unwrap(); assert!(suffix.is_empty()); test_new_helper_unaligned(lv); } { buf = [0u8; 8]; let (prefix, lv) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap(); assert!(prefix.is_empty()); test_new_helper_unaligned(lv); } { buf = [0xFFu8; 8]; let (prefix, lv) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..]) .unwrap(); assert!(prefix.is_empty()); test_new_helper_unaligned(lv); } let mut buf = [0u8; 16]; // buf.buf should be aligned to 8 and have a length which is a multiple // of size_of::<u64>(), so this should always succeed test_new_helper_slice_unaligned( LayoutVerified::<_, [u8]>::new_slice(&mut buf[..]).unwrap(), ); buf = [0xFFu8; 16]; test_new_helper_slice_unaligned( LayoutVerified::<_, [u8]>::new_slice_zeroed(&mut buf[..]).unwrap(), ); } #[test] fn test_new_oversized() { // Test that a properly-aligned, overly-sized buffer works for // new_from_prefix and new_from_suffix, and that they return the // remainder and prefix of the slice respectively. Test that xxx_zeroed // behaves the same, and zeroes the memory. let mut buf = AlignedBuffer::<u64, [u8; 16]>::default(); { // in a block so that lv and suffix don't live too long // buf.buf should be aligned to 8, so this should always succeed let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix(&mut buf.buf[..]).unwrap(); assert_eq!(suffix.len(), 8); test_new_helper(lv); } { buf.buf = [0xFFu8; 16]; // buf.buf should be aligned to 8, so this should always succeed let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).unwrap(); // assert that the suffix wasn't zeroed assert_eq!(suffix, &[0xFFu8; 8]); test_new_helper(lv); } { buf.clear_buf(); // buf.buf should be aligned to 8, so this should always succeed let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix(&mut buf.buf[..]).unwrap(); assert_eq!(prefix.len(), 8); test_new_helper(lv); } { buf.buf = [0xFFu8; 16]; // buf.buf should be aligned to 8, so this should always succeed let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).unwrap(); // assert that the prefix wasn't zeroed assert_eq!(prefix, &[0xFFu8; 8]); test_new_helper(lv); } } #[test] fn test_new_unaligned_oversized() { // Test than an unaligned, overly-sized buffer works for // new_unaligned_from_prefix and new_unaligned_from_suffix, and that // they return the remainder and prefix of the slice respectively. Test // that xxx_zeroed behaves the same, and zeroes the memory. let mut buf = [0u8; 16]; { // in a block so that lv and suffix don't live too long let (lv, suffix) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap(); assert_eq!(suffix.len(), 8); test_new_helper_unaligned(lv); } { buf = [0xFFu8; 16]; let (lv, suffix) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..]) .unwrap(); // assert that the suffix wasn't zeroed assert_eq!(suffix, &[0xFF; 8]); test_new_helper_unaligned(lv); } { buf = [0u8; 16]; let (prefix, lv) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap(); assert_eq!(prefix.len(), 8); test_new_helper_unaligned(lv); } { buf = [0xFFu8; 16]; let (prefix, lv) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..]) .unwrap(); // assert that the prefix wasn't zeroed assert_eq!(prefix, &[0xFF; 8]); test_new_helper_unaligned(lv); } } #[test] #[allow(clippy::cyclomatic_complexity)] fn test_new_fail() { // fail because the buffer is too large // a buffer with an alignment of 8 let mut buf = AlignedBuffer::<u64, [u8; 16]>::default(); // buf.buf should be aligned to 8, so only the length check should fail assert!(LayoutVerified::<_, u64>::new(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).is_none()); assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.buf[..]).is_none()); // fail because the buffer is too small // a buffer with an alignment of 8 let mut buf = AlignedBuffer::<u64, [u8; 4]>::default(); // buf.buf should be aligned to 8, so only the length check should fail assert!(LayoutVerified::<_, u64>::new(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).is_none()); assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.buf[..]).is_none()); assert!(LayoutVerified::<_, u64>::new_from_prefix(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).is_none()); assert!(LayoutVerified::<_, u64>::new_from_suffix(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).is_none()); assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf.buf[..]) .is_none()); assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf.buf[..]) .is_none()); // fail because the length is not a multiple of the element size let mut buf = AlignedBuffer::<u64, [u8; 12]>::default(); // buf.buf has length 12, but element size is 8 assert!(LayoutVerified::<_, [u64]>::new_slice(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, [u64]>::new_slice_zeroed(&mut buf.buf[..]).is_none()); assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned(&buf.buf[..]).is_none()); assert!( LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_zeroed(&mut buf.buf[..]).is_none() ); // fail because the alignment is insufficient // a buffer with an alignment of 8 let mut buf = AlignedBuffer::<u64, [u8; 12]>::default(); // slicing from 4, we get a buffer with size 8 (so the length check // should succeed) but an alignment of only 4, which is insufficient assert!(LayoutVerified::<_, u64>::new(&buf.buf[4..]).is_none()); assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[4..]).is_none()); assert!(LayoutVerified::<_, u64>::new_from_prefix(&buf.buf[4..]).is_none()); assert!(LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[4..]).is_none()); assert!(LayoutVerified::<_, [u64]>::new_slice(&buf.buf[4..]).is_none()); assert!(LayoutVerified::<_, [u64]>::new_slice_zeroed(&mut buf.buf[4..]).is_none()); // slicing from 4 should be unnecessary because new_from_suffix[_zeroed] // use the suffix of the slice assert!(LayoutVerified::<_, u64>::new_from_suffix(&buf.buf[..]).is_none()); assert!(LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).is_none()); } #[test] #[should_panic] fn test_new_slice_zst_panics() { LayoutVerified::<_, [()]>::new_slice(&[0u8][..]); } #[test] #[should_panic] fn test_new_slice_zeroed_zst_panics() { LayoutVerified::<_, [()]>::new_slice_zeroed(&mut [0u8][..]); } #[test] #[should_panic] fn test_new_slice_unaligned_zst_panics() { LayoutVerified::<_, [()]>::new_slice_unaligned(&[0u8][..]); } #[test] #[should_panic] fn test_new_slice_unaligned_zeroed_zst_panics() { LayoutVerified::<_, [()]>::new_slice_unaligned_zeroed(&mut [0u8][..]); } #[test] fn test_as_bytes_methods() { #[derive(Debug, Eq, PartialEq, FromBytes, AsBytes)] #[repr(C)] struct Foo { a: u32, b: u32, } let mut foo = Foo { a: 1, b: 2 }; // Test that we can access the underlying bytes, and that we get the // right bytes and the right number of bytes. assert_eq!(foo.as_bytes(), [1, 0, 0, 0, 2, 0, 0, 0]); // Test that changes to the underlying byte slices are reflected in the // original object. foo.as_bytes_mut()[0] = 3; assert_eq!(foo, Foo { a: 3, b: 2 }); // Do the same tests for a slice, which ensures that this logic works // for unsized types as well. let foo = &mut [Foo { a: 1, b: 2 }, Foo { a: 3, b: 4 }]; assert_eq!(foo.as_bytes(), [1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0]); foo.as_bytes_mut()[8] = 5; assert_eq!(foo, &mut [Foo { a: 1, b: 2 }, Foo { a: 5, b: 4 }]); } #[test] fn test_array() { // This is a hack, as per above in `test_as_bytes_methods`. mod zerocopy { pub use crate::*; } #[derive(FromBytes, AsBytes)] #[repr(C)] struct Foo { a: [u16; 33], } let foo = Foo { a: [0xFFFF; 33] }; let expected = [0xFFu8; 66]; assert_eq!(foo.as_bytes(), &expected[..]); } #[test] fn test_display_debug() { let buf = AlignedBuffer::<u64, [u8; 8]>::default(); let lv = LayoutVerified::<_, u64>::new(&buf.buf[..]).unwrap(); assert_eq!(format!("{}", lv), "0"); assert_eq!(format!("{:?}", lv), "LayoutVerified(0)"); let buf = AlignedBuffer::<u64, [u8; 8]>::default(); let lv = LayoutVerified::<_, [u64]>::new_slice(&buf.buf[..]).unwrap(); assert_eq!(format!("{:?}", lv), "LayoutVerified([0])"); } }