1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
//! This module is responsible for serializing and deserializing incoming and outgoing packets.
#![macro_use]
pub mod bits;
pub mod header;
pub mod nestedpayload;
pub mod rawend;
pub mod varlen;

use crate::crypto::signature::{Signature, KeyPair, sign_packet, Ed25519PublicKey, verify_raw};
use crate::payloads::binmemberauthenticationpayload::BinMemberAuthenticationPayload;
use crate::payloads::Ipv8Payload;
use crate::serialization::header::Header;
use bincode;
use bincode::ErrorKind;
use serde::{Deserialize, Serialize};
use std::error::Error;

create_error!(HeaderError, "The supplied header was invalid");

#[derive(Debug, Serialize, Deserialize, PartialEq)]
/// The packet struct containing the bytes of a packet in a `Vec<u8>`.
pub struct Packet(pub Vec<u8>);

impl Clone for Packet {
    fn clone(&self) -> Packet {
        Packet(self.0.to_vec())
    }
}

#[derive(Debug, PartialEq)]
/// The main deserializer which iterates over a packet to deserialize it.
///
/// This provides multipile helper methods for deserializing packets.
pub struct PacketDeserializer {
    /// The current packet being deserialize
    pub pntr: Packet,
    /// The index in the vector keeping track how far along we are deserializing.
    pub index: usize,
}

/// iterates over a packet to extract it's possibly multiple payloads
impl PacketDeserializer {
    /// Deserializes a stream of bytes into an ipv8 payload. Which payload is inferred by the type of T which is generic.
    /// T has to be deserializable and implement the Ipv8Payload trait.
    pub fn next_payload<T>(&mut self) -> Result<T, Box<ErrorKind>>
    where
        for<'de> T: Deserialize<'de> + Ipv8Payload + Serialize,
    {
        let res: T = bincode::config()
            .big_endian()
            .deserialize(&self.pntr.0[self.index..])?;

        // the old solution was: self.index += size_of::<T>();
        // this doesnt work as it is not uncommon to return less bytes than was actually in the bytecode (lengths etc)
        // the code below works but is inefficient. TODO: create a more efficient way to do this.
        // tried this:
        /*
          let mut value = &self.pntr.0[self.index ..];
          let oldsize = value.len();
          let res: T = bincode::config().big_endian().deserialize_from(&mut value)?;
          self.index += (oldsize - value.to_owned().len());
        */
        // apparently it is less efficient than recalculating the size as below.
        // on the bench_deserialize_multiple benchmark in the tests section below
        // it got 17,584,554 ns per iteration (where each iteration is 100000 serialize/deserializations
        // while the recalculation takes 11,965,294ns
        self.index += bincode::config().big_endian().serialized_size(&res)? as usize;
        Ok(res)
    }

    /// Returns the header of a packet without removing it
    pub fn peek_header(&self) -> Result<Header, Box<ErrorKind>> {
        let res: Header = bincode::config()
            .big_endian()
            .deserialize(&self.pntr.0[self.index..])?;
        Ok(res)
    }

    /// Returns the header of a packet and removes it
    pub fn pop_header(&mut self) -> Result<Header, Box<ErrorKind>> {
        let res = self.peek_header()?;
        self.index += res.size;
        Ok(res)
    }

    /// Just skips over the header returning self
    pub fn skip_header(mut self) -> Result<Self, Box<ErrorKind>> {
        self.pop_header()?;
        Ok(self)
    }

    /// proxy for the deserializer's packet length.
    fn len(&self) -> usize {
        self.pntr.len()
    }

    /// This should be in most cases the first method to be called when receiving a packet. It **assumes** there is a
    /// BinMemberAuthenticationPayload at the start of the message (AND DOES NOT CHECK IF IT IS OR NOT). It extracts it and the
    /// with the sign put at the end by the sender by calling Packet.sign() verifies that the packet is still inyhtact.
    ///
    /// If the public key has been acquired in any other way (i.e. there is no BinMemberAuthenticationPayload at the start)
    /// use the Packet.verify_with() function instead.
    pub fn verify(&mut self) -> bool {
        let authpayload: BinMemberAuthenticationPayload = match self.next_payload() {
            Ok(i) => i,
            Err(_) => return false, // when an error occurred the signature is certainly not right.
        };
        self.verify_with(authpayload.public_key_bin)
    }

    /// Does the same thing as the Packet. verify method. Takes a public key as second argument instead of extracting it from the packet itself
    /// through a BinMemberAuthenticationPayload
    pub fn verify_with(&mut self, pkey: Ed25519PublicKey) -> bool {
        let keylength = Signature::ED25519_SIGNATURE_BYTES;

        let datalen = self.len();

        let (packet, signature) = self.pntr.0.split_at(datalen - keylength);

        let status = verify_raw(&pkey, packet, signature);
        self.pntr.0.truncate(datalen - keylength);

        status
    }
}

impl Packet {
    /// Creates a new packet with a given header.
    pub fn new(header: Header) -> Result<Self, Box<dyn Error>> {
        let mut res = Self(vec![]);
        res.0
            .extend(match bincode::config().big_endian().serialize(&header) {
                Ok(i) => i,
                Err(_) => return Err(Box::new(HeaderError)),
            });
        Ok(res)
    }

    /// Extracts the raw byte contents from a packet.
    pub fn raw(&self) -> &[u8] {
        &*self.0
    }

    /// Signs a packet. After this, new payloads must under no circumstances be added as this will
    /// break the verification process on the receiving end. There is no check for this by design for a speed boost
    /// (though this may or may not be revisited later). Sign deliberately consumes self and returns it again so it can
    /// be assigned to a new, immutable variable to never be changed again.
    ///
    /// Verification of this signature can only happen when a public key is known at the receiving end. The user of the rust-ipv8 library
    /// is responsible for this to already have been packed into the final packet or alternatively already known by the receiver.
    ///
    /// To verify signatures first transform the Packet into a PacketIterator with Packet.deserialize_multiple and then use the PacketIterator.verify() or
    /// PacketIterator.verify_with() method.
    pub fn sign(mut self, keypair: &KeyPair) -> Result<Self, Box<dyn Error>> {
        //        let signature = Signature::from_bytes(&*self.0, skey)?;
        let signature = sign_packet(&keypair, &self)?;
        self.add(&signature)?;

        // now this packet *must not* be modified anymore
        Ok(self)
    }

    /// Deserializes a stream of bytes into ipv8 payloads.
    pub fn start_deserialize(self) -> PacketDeserializer {
        PacketDeserializer {
            pntr: self,
            index: 0,
        }
    }

    /// Adds a payload to a packet. This serializes payloads.
    pub fn add<T>(&mut self, obj: &T) -> Result<(), Box<ErrorKind>>
    where
        T: Ipv8Payload + Serialize,
    {
        self.0
            .extend(bincode::config().big_endian().serialize(&obj)?);
        Ok(())
    }

    /// Proxy for the packet's content length
    fn len(&self) -> usize {
        self.0.len()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use serde::{Deserialize, Serialize};

    #[derive(Debug, PartialEq, Serialize, Deserialize)]
    struct TestPayload1 {
        test: u16,
    }

    impl Ipv8Payload for TestPayload1 {
        // doesnt have anything but needed for the default implementation (as of right now)
    }

    #[derive(Debug, PartialEq, Serialize, Deserialize)]
    struct TestPayload2 {
        test: u32,
    }

    impl Ipv8Payload for TestPayload2 {
        // doesnt have anything but needed for the default implementation (as of right now)
    }
    //
    //  // only works with feature(test) and with `extern crate test; use test::Bencher;`
    //  extern crate test;
    //  use test::Bencher;
    //  use crate::serialization::varlen::VarLen16;
    //  #[derive(Debug, PartialEq, Serialize, Deserialize)]
    //  struct TestPayload3 {
    //    test:VarLen16,
    //  }
    //
    //  impl Ipv8Payload for TestPayload3 {
    //    // doesnt have anything but needed for the default implementation (as of right now)
    //  }
    //
    //  #[bench]
    //  fn bench_deserialize_multiple(b: &mut Bencher){
    //    let mut tst = vec![];
    //    for i in 0..10000{
    //      tst.push((i%255) as u8);
    //    }
    //
    //    b.iter(move || {
    //      let n = test::black_box(100000);
    //      for _i in 0..n{
    //
    //        let a = TestPayload1{test:42};
    //        let b = TestPayload2{test:43};
    //        let c = TestPayload1{test:10};
    ////        let c = TestPayload3{test:VarLen16(tst.to_owned())};
    //
    //        let mut ser_tmp = Packet::serialize(&a).unwrap();
    //        ser_tmp.add(&b).unwrap();
    //        ser_tmp.add(&c).unwrap();
    //
    //        let mut deser_iterator = ser_tmp.deserialize_multiple();
    //        assert_eq!(a,deser_iterator.next().unwrap());
    //        assert_eq!(b,deser_iterator.next().unwrap());
    //        assert_eq!(c,deser_iterator.next().unwrap());
    //      }
    //    });
    //  }

    #[test]
    fn test_raw() {
        let header = create_test_header!();
        let packet = Packet::new(header).unwrap();
        let raw = packet.raw();
        assert_eq!(
            raw,
            &[0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42,]
        )
    }

    #[test]
    fn test_peek_header() {
        let packet = Packet::new(create_test_header!()).unwrap();
        let deserializer = packet.start_deserialize();
        let header1 = deserializer.peek_header().unwrap();
        let header2 = deserializer.peek_header().unwrap();

        assert_eq!(header1, header2);
    }

    #[test]
    fn test_sign_verify_ed25519() {
        let a = TestPayload1 { test: 42 };
        let mut packet = Packet::new(create_test_header!()).unwrap();
        packet.add(&a).unwrap();

        let pk = KeyPair::from_seed_unchecked(&[
            0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
            24, 25, 26, 27, 28, 29, 30, 31,
        ])
        .unwrap();

        let publickey = pk.public_key().unwrap();

        let signed = packet.sign(&pk).unwrap();

        let mut deser_iterator = signed.start_deserialize();
        let valid = deser_iterator.verify_with(publickey);
        assert!(valid);
    }

    #[test]
    fn test_serialize_multiple() {
        let a = TestPayload1 { test: 42 };
        let b = TestPayload2 { test: 43 };
        let c = TestPayload1 { test: 44 };

        let mut packet = Packet::new(create_test_header!()).unwrap();

        packet.add(&a).unwrap();
        packet.add(&b).unwrap();
        packet.add(&c).unwrap();

        assert_eq!(
            Packet(vec![
                0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 42, 0, 0,
                0, 43, 0, 44
            ]),
            packet
        );
    }

    #[test]
    fn test_deserialize_multiple() {
        let a = TestPayload1 { test: 42 };
        let b = TestPayload2 { test: 43 };
        let c = TestPayload1 { test: 44 };

        let mut packet = Packet::new(create_test_header!()).unwrap();
        packet.add(&a).unwrap();
        packet.add(&b).unwrap();
        packet.add(&c).unwrap();

        let mut deser_iterator = packet.start_deserialize().skip_header().unwrap();
        assert_eq!(a, deser_iterator.next_payload().unwrap());
        assert_eq!(b, deser_iterator.next_payload().unwrap());
        assert_eq!(c, deser_iterator.next_payload().unwrap());
    }

    #[test]
    fn test_deserialize_multiple_more() {
        let a = TestPayload1 { test: 42 };
        let b = TestPayload2 { test: 43 };
        let c = TestPayload1 { test: 44 };

        let mut ser_tmp = Packet::new(create_test_header!()).unwrap();
        ser_tmp.add(&a).unwrap();
        ser_tmp.add(&b).unwrap();
        ser_tmp.add(&c).unwrap();

        let mut deser_iterator = ser_tmp.start_deserialize().skip_header().unwrap();
        assert_eq!(a, deser_iterator.next_payload().unwrap());
        assert_eq!(b, deser_iterator.next_payload().unwrap());
        assert_eq!(c, deser_iterator.next_payload().unwrap());

        let last: Result<TestPayload1, Box<ErrorKind>> = deser_iterator.next_payload();
        match last {
            Ok(_) => assert!(false, "this should throw an error as there is no next"),
            Err(_) => assert!(true),
        };
    }
}